Manipulating Data in R

John Muschelli

January 7, 2016

Overview

In this module, we will show you how to:

=

Reshaping data from long (tall) to wide (fat)
Reshaping data from wide (fat) to long (tall)
Merging Data

Perform operations by a grouping variable

Setup

We will show you how to do each operation in base R then show
you how to use the dplyr or tidyr package to do the same
operation (if applicable)

See the “Data Wrangling Cheat Sheet using dplyr and tidyr":

> https://www.rstudio.com/wp-content/uploads/2015/
02/data-wrangling-cheatsheet.pdf

https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf
https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf

Load the packages/libraries

library (dplyr)

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':
filter, lag

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union

library (tidyr)

Data used: Charm City Circulator

http://www.aejaffe.com/winterR_2016/data/Charm_City_
Circulator_Ridership.csv

Let's read in the Charm City Circulator data:

ex_data = read.csv("http://www.aejaffe.com/winterR_2016/da
head(ex_data, 2)

day date orangeBoardings orangeAlightings oran;
1 Monday 01/11/2010 877 1027
2 Tuesday 01/12/2010 777 815
purpleBoardings purpleAlightings purpleAverage greenBoar
1 NA NA NA
NA NA NA
greenAlightings greenAverage bannerBoardings bannerAlighs
1 NA NA NA
NA NA NA

bannerAverage daily
1 NA 952

http://www.aejaffe.com/winterR_2016/data/Charm_City_Circulator_Ridership.csv
http://www.aejaffe.com/winterR_2016/data/Charm_City_Circulator_Ridership.csv

Creating a Date class from a character date
The lubridate package is great for dates:

library(lubridate) # great for dates!
ex_data = mutate(ex_data, date = mdy(date))
nrow(ex_data[is.na(ex_data$date), 1)

(1] ©

head(ex_data$date)

[1] "2010-01-11 UTC" "2010-01-12 UTC" "2010-01-13 UTC" "20:
[56] "2010-01-15 UTC" "2010-01-16 UTC"

class(ex_data$date)

[1] "POSIXct" "POSIXt"

Making column names a little more separated

We will use str_replace from stringr to put periods in the
column names.

library(stringr)

cn = colnames(ex_data)

cn = cn 5>%
str_replace("Board", ".Board") %>%
str_replace("Alight", ".Alight") %>%
str_replace("Average", ".Average")

colnames(ex_data) = cn

Removing the daily ridership

We want to look at each ridership, and will removet the daily
column:

ex_data$daily = NULL

Reshaping data from wide (fat) to long (tall)

See http://www.cookbook-r.com/Manipulating_data/
Converting data_between_wide_and_long_format/

http://www.cookbook-r.com/Manipulating_data/Converting_data_between_wide_and_long_format/
http://www.cookbook-r.com/Manipulating_data/Converting_data_between_wide_and_long_format/

Reshaping data from wide (fat) to long (tall): base R

The reshape command exists. It is a confusing function. Don't
use it.

Reshaping data from wide (fat) to long (tall): tidyr

In tidyr, the gather function gathers columns into rows.

We want the column names into “var” variable in the output
dataset and the value in "number” variable. We then describe
which columns we want to “gather:”

long = gather(ex_data, "var',
starts_with("orange"),
starts_with("purple"), starts_with("green"),
starts_with("banner"))

"number",

head(long)

day date var number
1 Monday 2010-01-11 orange.Boardings 877
2 Tuesday 2010-01-12 orange.Boardings TrT
3 Wednesday 2010-01-13 orange.Boardings 1203
4 Thursday 2010-01-14 orange.Boardings 1194
5 Friday 2010-01-15 orange.Boardings 1645
6 Saturday 2010-01-16 orange.Boardings 1457

Reshaping data from wide (fat) to long (tall): tidyr

Now each var is boardings, averages, or alightings. We want to
separate these so we can have these by line.

long = separate_(long, "var", into = c("line", "type"), se
head(long)
day date line type number

1 Monday 2010-01-11 orange Boardings 877
2 Tuesday 2010-01-12 orange Boardings TrT
3 Wednesday 2010-01-13 orange Boardings 1203
4 Thursday 2010-01-14 orange Boardings 1194
5 Friday 2010-01-15 orange Boardings 1645
6 Saturday 2010-01-16 orange Boardings 1457

table(long$line)

banner green orange purple

Reshaping data from long (tall) to wide (fat): tidyr

In tidyr, the spread function spreads rows into columns. Now we

have a long data set, but we want to separate the Average,
Alightings and Boardings into different columns:

have to remove missing days
wide = filter(long, '!is.na(date))
wide = spread(wide, type, number)

head (wide)

day
Friday
Friday
Friday
Friday
Friday
Friday

[TS 2 IOV I S I o

date
2010-01-15
2010-01-15
2010-01-15
2010-01-15
2010-01-22
2010-01-22

line Alightings Average Boardings

banner
green
orange
purple
banner
green

NA
NA
1643
NA
NA
NA

NA
NA
1644
NA
NA
NA

NA
NA
1645
NA
NA
NA

Reshaping data from long (tall) to wide (fat): tidyr
We can use rowSums to see if any values in the row is NA and keep
if the row, which is a combination of date and line type has any
non-missing data.

wide = wide >

select (Alightings, Average, Boardings) />

mutate(good = rowSums(is.na(.)) > 0)

namat = !is.na(select(wide, Alightings, Average, Boardings.
head (namat)

Alightings Average Boardings

1 FALSE FALSE FALSE
2 FALSE FALSE FALSE
3 TRUE TRUE TRUE
4 FALSE FALSE FALSE
5 FALSE FALSE FALSE
6 FALSE FALSE FALSE

2t AADrAnAd = roarriamelnhamat) S 0O

Reshaping data from long (tall) to wide (fat): tidyr

Now we can filter only the good rows and delete the good column.

wide = filter(wide, good) %>J, select(-good)
head(wide)

day
Friday
Friday
Friday
Friday
Friday

o O W

Friday

date
2010-01-15
2010-01-22
2010-01-29
2010-02-05
2010-02-12
2010-02-19

line Alightings

orange
orange
orange
orange
orange
orange

1643
1388
1322
1204

678
1647

Average Boardings

1644 .
1394.
1332.
1217.
671.
1642.

0

O O 0T o ;m

1645
1401
1342
1231

664
1637

Data Merging/Append in Base R

» Merging - joining data sets together - usually on key variables,
usually “id"
» merge () is the most common way to do this with data sets
» rbind/cbind - row/column bind, respectively
» rbind is the equivalent of “appending” in Stata or “setting” in
SAS

» cbind allows you to add columns in addition to the previous
ways

» t() is a function that will transpose the data

Merging

base <- data.frame(id = 1:10, Age= seq(55,60, length=10))
base[1:2,]

id Age
1 1 55.00000
2 2 55.55556

visits <- data.frame(id = rep(1:8, 3), visit= rep(1:3, 8),
Outcome = seq(10,50, length=24))
visits[1:2,]

id visit Outcome
1 1 1 10.00000
2 2 2 11.73913

Merging

merged.data <- merge(base, visits, by="id")
merged.data[1:5,]

id Age visit QOutcome
1 1 55.00000 1 10.00000
2 1 55.00000 3 23.91304
3 1 55.00000 2 37.82609
4 2 55.55556 2 11.73913
5 2 55.55556 1 25.65217

dim(merged.data)

[1] 24 4

Merging

all.data <- merge(base, visits, by="id", all=TRUE)
tail(all.data)

id Age visit Outcome
21 7 58.33333 2 48.26087
22 8 58.88889 2 22.17391
23 8 58.88889 1 36.08696
24 8 58.88889 3 50.00000
25 9 59.44444 NA NA
26 10 60.00000 NA NA

dim(all.data)

[1] 26 4

Joining in dplyr

> 7join - see different types of joining for dplyr
> Let's look at https://www.rstudio.com/wp-content/
uploads/2015/02/data-wrangling-cheatsheet.pdf

https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf
https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf

Left Join

1j = left_join(base, visits)

Joining by: "id"

dim(1j)

[1] 26 4

tail(lj)

id
21
22
23
24
25
26 10

© 0 00 00 N

58.
58.
58.
58.
59.
60.

Age visit QOutcome

33333
88889
88889
88889
44444
00000

2 48.26087
2 22.17391
1 36.08696
3 50.00000
NA NA
NA NA

Right Join

rj = right_join(base, visits)

Joining by: "id"

dim(rj)
(1] 24 4
tail(rj)

id Age visit QOutcome
19 3 56.11111 1 41.30435
20 4 56.66667 2 43.04348
21 5 57.22222 3 44.78261
22 6 57.77778 1 46.52174
23 7 58.33333 2 48.26087
24 8 58.88889 3 50.00000

Full Join

fj = full_join(base, visits)

Joining by: "id"

dim(£j)

[1] 26 4

tail(fj)

id
21
22
23
24
25
26 10

© 0 00 00 N

58.
58.
58.
58.
59.
60.

Age visit QOutcome

33333
88889
88889
88889
44444
00000

2 48.26087
2 22.17391
1 36.08696
3 50.00000
NA NA
NA NA

Perform Operations By Groups: base R

The tapply command will take in a vector (X), perform a function
(FUN) over an index (INDEX):

args (tapply)

function (X, INDEX, FUN = NULL, ..., simplify = TRUE)
NULL

Perform Operations By Groups: base R

Let's get the mean Average ridership by line

tapply(wide$Average, wide$line, mean, na.rm = TRUE)

banner green orange purple
827.2685 1957.7814 3033.1611 4016.9345

Perform Operations By Groups: dplyr

Let's get the mean Average ridership by line We will use group_by
to group the data by line, then use summarize (or summarise) to
get the mean Average ridership:

gb = group_by(wide, line)
summarize(gb, mean_avg = mean(Average))

Source: local data frame [4 x 2]

line mean_avg
(chr) (dbl)
1 banner 827.2685
2 green 1957.7814
3 orange 3033.1611
4 purple 4016.9345

Perform Operations By Groups: dplyr with piping
Using piping, this is:

wide %>%
group_by(line) %>%
summarise (mean_avg = mean(Average))

Source: local data frame [4 x 2]

line mean_avg
(chr) (dbl)
1 banner 827.2685
2 green 1957.7814
3 orange 3033.1611
4 purple 4016.9345

Perform Operations By Multiple Groups: dplyr

This can easily be extended using group_by with multiple groups.
Let's define the year of riding:

wide = wide %>% mutate(year = year(date),
month = month(date))
wide %>%
group_by(line, year) %>%
summarise (mean_avg = mean(Average))

Source: local data frame [13 x 3]
Groups: line [7]

line year mean_avg
(chr) (dbl) (dbl)
1 banner 2012 882.0929
2 banner 2013 635.3833
3 green 2011 1455.1667
4 green 2012 2028.7740

Perform Operations By Multiple Groups: dplyr

We can then easily plot each day over time:

library(ggplot2)
ggplot(aes(x = date, y = Average,
colour = line), data = wide) + geom_line()

ooooo
00000

‘” \ [|
i W -
M Wﬂl :

00000

Perform Operations By Multiple Groups: dplyr

Let's create the middle of the month (the 15th for example), and
name it mon.

mon = wide %>%
dplyr::group_by(line, month, year) %>/
dplyr: :summarise(mean_avg = mean(Average))
mon = mutate(mon,
mid_month = dmy(paste0("15-", month, "-", yea:
head (mon)

Source: local data frame [6 x 5]
Groups: line, month [6]

line month year mean_avg mid_month

(chr) (dbl) (dbl) (dbl) (time)
1 banner 1 2013 610.3226 2013-01-15
2 banner 2013 656.4643 2013-02-15

2
3 banner 3 2013 822.0000 2013-03-15

" 9 PANA LN AN AN ONAALS A a4

Perform Operations By Multiple Groups: dplyr

We can then easily plot the mean of each month to see a smoother
output:

ggplot (aes(x = mid_month,
y = mean_avg,
colour = line), data = mon) + geom_line()

5000~

4000~

line

9

banner

— green
3000~ g

2000~ /

mean_av(

— orange

purple

Bonus! Points with a smoother!

ggplot(aes(x = date, y = Average, colour
data = wide) + geom_smooth(se
geom_point(size = .5)

line),
FALSE) +

8000~

6000~

line
~= banner

4000~ —— green

Average

~— orange

— purple

2000~

