Data Summarization

Module 7

Andrew Jaffe

June 17, 2015

Data Summarization

- Basic statistical summarization
 - \texttt{mean(x)}: takes the mean of \texttt{x}
 - \texttt{sd(x)}: takes the standard deviation of \texttt{x}
 - \texttt{median(x)}: takes the median of \texttt{x}
 - \texttt{quantile(x)}: displays sample quantities of \texttt{x}. Default is min, IQR, max
 - \texttt{range(x)}: displays the range. Same as \texttt{c(min(x), max(x))}

- Basic summarization plots
 - \texttt{plot(x,y)}: scatterplot of \texttt{x} and \texttt{y}
 - \texttt{boxplot(y~x)}: boxplot of \texttt{y} against levels of \texttt{x}
 - \texttt{hist(x)}: histogram of \texttt{x}
 - \texttt{density(X)}: kernel density plot of \texttt{x}

Data Summarization on matrices/data frames

- Basic statistical summarization
 - \texttt{rowMeans(x)}: takes the means of each row of \texttt{x}
 - \texttt{colMeans(x)}: takes the means of each column of \texttt{x}
 - \texttt{rowSums(x)}: takes the sum of each row of \texttt{x}
 - \texttt{colSums(x)}: takes the sum of each column of \texttt{x}
 - \texttt{summary(x)}: for data frames, displays the quantile information

- Basic summarization plots
 - \texttt{matplot(x,y)}: scatterplot of two matrices, \texttt{x} and \texttt{y}
 - \texttt{pairs(x,y)}: plots pairwise scatter plots of matrices \texttt{x} and \texttt{y}, column by column

\begin{verbatim}
circ2 = read.csv("../data/charmcitycirc_reduced.csv", header=TRUE,as.is=TRUE)
colMeans(circ2[,3:6],na.rm=TRUE)

orangeAverage purpleAverage greenAverage bannerAverage
3033.1611 4016.9345 1957.7814 827.2685
\end{verbatim}
head(rowMeans(circ2[,3:6],na.rm=TRUE))

[1] 952.0 796.0 1211.5 1213.5 1644.0 1490.5

Summary

summary(circ2)

day date orangeAverage purpleAverage
Length:1146 Length:1146 Min. : 0 Min. : 0
Class :character Class :character 1st Qu.:2001 1st Qu.:2795
Mode :character Mode :character Median :2968 Median :4222
Mean :3033 Mean :4017
3rd Qu.:4020 3rd Qu.:5147
Max. :6926 Max. :8090
NA's :10 NA's :153

greenAverage bannerAverage daily
Min. : 0 Min. : 0.0 Min. : 0
1st Qu.:1491 1st Qu.: 632.5 1st Qu.: 4293
Median :2079 Median : 763.0 Median : 6702
Mean :1958 Mean : 827.3 Mean : 7233
3rd Qu.:2340 3rd Qu.:10501 3rd Qu.:10501
Max. :5094 Max. :4617.0 Max. :22075
NA's :661 NA's :876 NA's :124

Apply statements

You can apply more general functions to the rows or columns of a matrix or data frame, beyond the mean and sum.

apply(X, MARGIN, FUN, ...)

X : an array, including a matrix.
MARGIN : a vector giving the subscripts which the function will be applied over. E.g., for a matrix 1 indicates rows, 2 indicates columns, c(1, 2) indicates rows and columns. Where X has named dimnames, it can be a character vector selecting dimension names.
FUN : the function to be applied: see ‘Details’.
... : optional arguments to FUN.

Apply statements

tmp = circ2[,3:6]
apply(tmp,2,mean,na.rm=TRUE) # column means

orangeAverage purpleAverage greenAverage bannerAverage
3033.1611 4016.9345 1957.7814 827.2685
apply(tmp, 2, sd, na.rm=TRUE) # columns sds

orangeAverage purpleAverage greenAverage bannerAverage
1227.5779 1406.6544 592.8969 436.0487

apply(tmp, 2, max, na.rm=TRUE) # column maxs

orangeAverage purpleAverage greenAverage bannerAverage
6926.5 8089.5 5094.0 4617.0

Other Apply Statements

- tapply(): ‘table’ apply
- lapply(): ‘list’ apply [tomorrow]
- sapply(): ‘simple’ apply [tomorrow]
- Other less used ones...

See more details here: http://nsaunders.wordpress.com/2010/08/20/a-brief-introduction-to-apply-in-r/

tapply()

From the help file: “Apply a function to each cell of a ragged array, that is to each (non-empty) group of values given by a unique combination of the levels of certain factors.”

tapply(X, INDEX, FUN = NULL, ..., simplify = TRUE)

Simply put, you can apply function FUN to X within each categorical level of INDEX. It is very useful for assessing properties of continuous data by levels of categorical data.

tapply()

For example, we can estimate the highest average daily ridership for each day of the week in 1 line in the Circulator dataset.

tapply(circ2$daily, circ2$day, max, na.rm=TRUE)

Friday Monday Saturday Sunday Thursday Tuesday Wednesday
21951.0 13982.0 22074.5 15224.5 17580.0 14775.5 15672.5

Basic Plots

Plotting is an important component of exploratory data analysis. We will review some of the more useful and informative plots here. We will go over formatting and making plots look nicer in additional lectures.

Scatterplot
data(cars)
plot(cars$speed, cars$dist)

Histograms

hist(circ2$daily)
Histogram of circ2$daily

Density

```r
## plot(density(circ2$daily))
plot(density(circ2$daily, na.rm=TRUE))
```
```r
density.default(x = circ2$daily, na.rm = TRUE)
```

```
N = 1022  Bandwidth = 918.9
```

Boxplots

```r
boxplot(circ2$daily ~ circ2$day)
```
Boxplots

`boxplot(daily ~ day, data=circ2)`
Matrix plot

`matplot(circ2[,3:6])`