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Figure 6. GTEx ERs analysis using 24 samples from the heart (left ventricle), liver and testis for 8 subjects. (A) ERs (longer than 9 bp) overlapping known
annotation based on GRGh38.p5 (hg38). 72.6% of the ERs only overlap known exons (strictly exonic) while 10.4% only overlap known introns (strictly
intronic). (B) First two PCs with samples colored by sample type (red: liver, blue: heart, green: testis) using only the strictly exonic ERs. (C) First two PCs
with samples colored by sample type using only the strictly intronic ERs. The sign change of the second principal component is simply a rotation and the
results are consistent between the strictly exonic and strictly intronic ERs.

Using limma (15,16) to test for differential expression
between tissues (Supplementary Methods Section 2.4.2) we
found that 42 880 (36.1%) of the strictly exonic ERs and 4
401 (25.9%) of the strictly intronic ERs were differentially
expressed (FWER of 5% via Bonferroni correction). Over-
all 59 776 (36.5%) of the ERs were differentially expressed
between tissues. Given the similar global patterns of expres-
sion between annotated and unannotated ERs, we consid-
ered the scenario that the strictly intronic ERs were differ-
entially expressed between tissues in the same pattern as
the nearest exonic ERs due to possible run-off transcription
events. To assess this scenario we fitted a conditional regres-
sion for each strictly intronic ER adjusting for the coverage
of the nearest strictly exonic ER. A total of 749 (4.4%) of the
strictly intronic ERs differentiate tissues while adjusting for
the coverage at the nearest exonic ER at a FWER of 5%.
Figure 7A and B shows an example where the expression is
similar between tissues in the nearest exonic ER but there is
a clear tissue difference in the intronic ER with testis having
higher expression than the other two tissues. Figure 7C and
D shows different patterns between the intronic and exonic
ERs where in the exonic ER the expression is lowest in the
heart, higher in liver and slightly higher at the testis. How-
ever, in the intronic ER, liver is the tissue that has the lowest
expression. These results suggest that expression at unanno-
tated sequence could have biological relevance beyond local
annotated exonic sequence.

Simulation results

We lastly performed a simulation study to evaluate the sta-
tistical properties of derfinder with and without com-
plete annotation. To compare derfinder against feature-
level alternatives, we simulated reads for 2 groups, 10 sam-
ples in total (5 per group) with 1

6 of the transcripts hav-
ing higher and 1

6 lower expression in group 2 versus group

1 at fold changes of 2x and 1
2 x, respectively. Reads were

simulated from chromosome 17 using polyester (28)
with the total number of reads matching the expected num-
ber given paired-end library with 40 million reads (Supple-
mentary Methods Section 2.4.3). We used HISAT (29) to
align the simulated reads and summarized them using ei-
ther featureCounts from the Rsubread package (13)
or StringTie (23) and performed the statistical tests on
the resulting coverage matrices using limma and ball-
gown, (22) respectively. We performed the ballgown sta-
tistical test at the exon-level as well as the transcript-level.
We performed the feature-level analyses using the complete
annotation and with an annotation set missing 20% ran-
domly selected transcripts (8.28% unique exons missing).
We then used derfinder to find the ERs from the same
HISAT alignments as well as from Rail-RNA (26) output
and performed the statistical test with limma. For all sta-
tistical tests, we controlled the FDR at 5% and repeated the
simulation three times.

Table 1 shows the range of the empirical power, false posi-
tive rate (FPR) and FDR for all these methods based on the
three simulation replicates. derfinder’s expressed region
approach resulted in overlapping empirical power ranges
to the exon-level methods that are supplied the complete
annotation. The exon-level methods had a 18 to 27% loss
in power when using the incomplete annotation set com-
pared to the complete set even though only 8.28% of the
unique exons were missing. derfinder, being annotation-
agnostic, does not rely on having the complete annotation
but did show increased FPR and FDR compared to the
exon-level methods. We recommend performing sensitivity
analyses of the cutoff parameter used for defining ERs or
the FDR control in the statistical method used to deter-
mine which ERs are differentially expressed (i.e. DERs).
Transcript-level analyses had the lowest FPR and FDR but
also the lowest power. Note that we only performed tran-
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Figure 7. Differential expression on strictly intronic ERs adjusting for expression on the nearest strictly exonic ER. Boxplots (A and C) and region coverage
plots (B and D) for two strictly intronic ERs showing differential expression signal adjusting for the nearest exonic ER. Boxplots show the log2 adjusted
coverage for the strictly intronic ERs by tissue with the corresponding boxplot for the nearest strictly exonic ERs. The P-value shown is for the differential
expression between tissues on the intronic ERs conditional on the expression values for the nearest exonic ERs. The distance to the nearest strictly exonic
ER and the gene symbol are shown below. The region coverage plots are centered at the strictly intronic ER with the neighboring 2 kb and 5 kb for (C)
and (D), respectively. (A and B) Expression on the exonic ER is fairly similar between the groups but different on the intronic ER. (C and D) Expression
on the exonic ER has an increasing pattern from heart to liver to testis but has a different pattern on the intronic ER.

script expression quantification with StringTie and did
not use the data to determine new transcripts. Doing so re-
sulted in a much larger transcript set than originally present
in the data: 3 900 in the original set versus 15 920 (average
for the three replicates using the complete annotation).

Supplementary Section 1.6.1 shows the results when us-
ing DEseq2 or edgeR-robust for performing the statistical
tests. Figure 8 shows the mean empirical power against the
observed FDR for the different combinations of methods
when controlling the FDR at 1%, 5%, 10%, 15% and 20%.
Results with derfinder are among the set with the high-
est empirical power, at the cost of a higher observed FDR
than what was controlled for.

Identifying ERs uses computational resources and runs
in similar time to summarization steps required for the
exon-level pipelines used in this simulation (Supplementary
Section 1.6.2) and is the fastest when using BigWig files
such as those produced by Rail-RNA. These results sug-
gest that the derfinder approach performs well when
differentially expressed features overlap known annotation
and appear in unannotated regions of the genome. If you
are only interested in studying known regions, other meth-

ods have better FDR control than derfinder as shown in
Figure 8.

DISCUSSION

Here, we introduced the derfinder statistical software
for performing genome-scale annotation-agnostic RNA-
seq differential expression analysis. This approach utilizes
coverage-level information to identify DERs at the ex-
pressed region or single base-levels, and then generates use-
ful summary statistics, visualizations and reports to further
inspect and validate candidate regions. derfinder’s sta-
tistical model is flexible to allow answering any biological
question related to differential expression analysis, such as
multi-group comparisons and time-course analyses.

The reduced dependence on the transcriptome annota-
tion permits the discovery of novel regulated transcriptional
activity, such as the expression of intronic or intergenic se-
quences, which we highlight in publicly available RNA-seq
data and our previous derfinder application (20). As
shown with a subset of GTEx, strictly intronic ERs can dif-
ferentiate tissues when adjusting for the expression from the
nearest exonic expressed region, suggesting that some in-
tronic DERs may represent signal beyond run-off transcrip-
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Table 1. Minimum and maximum empirical power, FPR and FDR observed from the three simulation replicates for each analysis pipeline. Ballgown
analyses were done at either the exon or transcript levels. Pipelines that rely on annotation were run with the full annotation or with 20% of the transcripts
missing (8.28% exons missing). Count matrices were analyzed withlimma,DESeq2 andedgeR-robust (Supplementary Table S2). FDR of 5% was targeted.

Power FPR FDR
Annotation
complete Aligner Summary method Statistical method

(93.6–94.2) (6.4–9.3) (12.8–16.5) HISAT derfinder limma
(93.7–94.2) (6.5–9.1) (12.5–16.1) Rail-RNA derfinder limma
(69–77.6) (2.5–3.3) (6–7.7) No HISAT featureCounts limma
(94.4–95.1) (3.1–4.5) (6.5–7.5) Yes HISAT featureCounts limma
(68.4–77) (2.8–3) (5.5–8.3) No HISAT StringTie ballgown-exon
(93.7–94.6) (3.6–4) (5.9–7.8) Yes HISAT StringTie ballgown-exon
(53.2–60) (0.6–2.2) (1.4–8.1) No HISAT StringTie ballgown-trans
(67.2–71.9) (0.6–1.1) (1.4–3.2) Yes HISAT StringTie ballgown-trans

Figure 8. Mean empirical power versus observed FDR across the three
simulation replicates for a combination of statistical and summary meth-
ods. For FDR cutoffs of 1, 5, 10, 15 and 20% the mean empirical power
and FDR across the 3 simulation replicates is displayed for the combina-
tion of statistical method (ballgown at exon or transcript level, limma,
DESeq2, edgeR-robust) the summary method (derfinder, feature-
Counts (fC), StringTie (sT)) and whether the annotation used was
complete or not (complete, incomplete).

tion. Furthermore, the structure of DERs across a given
gene can permit the direct identification of differentially
expressed transcripts (e.g. Figure 2C), providing useful in-
formation for biologists running validation experiments.
Lastly, this software and statistical approach may be use-
ful for RNA-seq studies on less well-studies species, where
transcript annotation is especially likely to be incomplete.

We hypothesize that many ERs, particularly in polyA+
data sets, likely belong to novel transcript isoforms, anti-
sense expression, retained introns or extended UTRs that
can relate to novel insights into particular biological ques-
tions. For example, identifying extensive differentially ex-
pressed intronic ERs might point to deficits in splicing or
a potential novel transcript isoform with extended exonic
boundaries related to the outcome of interest. Or, differen-
tially expressed intergenic ERs might point to previously
uncharacterized regulatory RNAs like polyadenylated lin-
cRNAs that might be related to the outcome of interest. As
described in the introduction, we have previously demon-
strated the utility of the DER finder approach in the human

brain, which suggested that previously unannotated ex-
pressed sequence was developmentally regulated, expressed
in other brain regions and cell types and associated with
clinical risk for schizophrenia (20).

The software pipeline, starting with BAM or BigWig
files, and ending with lists of DERs, reports and visual-
izations, runs at comparable speeds to existing RNA-seq
analysis software. Given the appropriate computing re-
sources, derfinder can scale to analyze studies with sev-
eral hundred samples. For such large studies, it will be
important to correct for batch effects and potentially ex-
pand derfinder’s statistical model for base-level covari-
ates. This approach provides a powerful intermediate analy-
sis approach that combines the benefits of feature counting
and transcript assembly to identify differential expression
without relying on existing gene annotation.

AVAILABILITY

The derfinder vignettes detail how to use the software
and its infrastructure. The latest versions are available at
www.bioconductor.org/packages/derfinder. The code and
log files detailing the versions of the software used for all
the analyses described in this paper is available at the Sup-
plementary Website: leekgroup.github.io/derSupplement.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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